Closing Tuesday: 2.1
Closing Thursday: 2.2 and 2.3(part 1)
Note: 2.2 and 2.3 are big algebra homework assignments; start now!
Read the book and my detailed review sheets before starting.

Today: Finish intro to quadratics. Function Notation \& algebra. Next week: Applications.

Recall
The solution(s) to $a x^{2}+b x+c=0$
are: $\quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
The x-coordinate of the vertex of

$$
y=a x^{2}+b x+c
$$

is: $\quad x=-\frac{b}{2 a}$

Example 1:

Consider the quadratic function

$$
f(x)=x^{2}-6 x+5
$$

(a) Does it open upward or downward?
(b) What are the x-intercepts?
(c) What is the y-intercept?
(d) What are the x - and y-coordinates of the vertex?

Graph of $f(x)=x^{2}-6 x+5$.

Example 2: (A preview of next week) Very similar to the first 6 questions in the 2.3 homework!

Total revenue (TR) and total cost (TC) are given by
$R(x)=42 x-x^{2}$ and $C(x)=50+3 x$
where $\quad x$ is in hundred items and
$R(x), C(x)$ are in hundred dollars.
(a) At what quantity is TR maximum?
(b) What is the maximum TR?
(c) Find the break-even points (i.e. quantities where profit is zero). This is not the same as breakeven price!
(d) What quantity maximizes profit?

2.2: Rates and Functional Notation

Recall: Given $y=f(x)$

$$
\begin{aligned}
\text { overall rate } & =\frac{f(x)-f(0)}{x} \\
\text { diagonal slope } & =\frac{f(x)}{x} \\
\text { incremental rate } & =\frac{f(b)-f(a)}{b-a}
\end{aligned}
$$

In particular:
$\operatorname{ATS}(t)=\frac{D(t)}{t}, \operatorname{AR}(q)=\frac{T R(q)}{q}$
$A C(q)=\frac{T C(q)}{q}, A V C(q)=\frac{V C(q)}{q}$
And:

$$
\begin{aligned}
& A S(t)=\frac{D(t+h)-D(t)}{h}, \\
& M R(q)=\frac{T R(q+\text { "one } \text { item" } ")-T R(q)}{\text { "one }{ }^{\text {item" }}}, \\
& M C(q)=\frac{T C\left(q+\text { "one }{ }^{\text {item }} \text { " }-T C(q)\right.}{\text { "one item" }}
\end{aligned}
$$

Example 1: A object is launched in the air. Its distance, $\mathrm{D}(\mathrm{t})$, in miles above the ground at time t hours is given by

$$
D(t)=144 t-18 t^{2}
$$

OVERALL RATES:
(a) Find ATS at $\mathrm{t}=4$.
(b) Find the formula for ATS(t).
(c) When will ATS be 100 mph ?

WARM UP (general graph questions)
(a) How far does the car go the $1^{\text {st }} \mathrm{hr}$?
(b) Give the largest interval over which the distance is increasing.

Again, $D(t)=144 t-18 t^{2}$
INCREMENTAL RATES:
(a) Find the average speed over the 2 hour interval starting at $t=2$.
(b) Find the average speed over the 0.1 -hour interval starting at $t=2$.
(c) Find the general formula for the average speed over the 0.1-hour interval starting at t.
(d) Find the general formula for the average speed over the h-hour interval starting at t.

